

Magnetic Ground State of Industrial Sensors

Teresa Turmanian (Juniata College) in collaboration with Dr. Brian Kirby (NIST), Dr. Alex Grutter (NIST), Dr. Joe Davies (NVE Industries)

Problem & Background

Experiment

Results

Conclusions

Continuing Work

Background

wafer GMR sensor

Indium.com Spinic.com

Magnetic particle

Ferromagnet

Synthetic anti-ferromagnet

AKA wafer

Purpose: Determine thickness and magnetization

- No external magnetic field AKA ground state
- High resistance

- External magnetic field
- Low resistance

neutron wave

Constructive Interference

λ θ_{I} d

Destructive Interference

Bragg condition $n\lambda = 2d \sin \theta$

Interference from layers of varying thickness

Angle of incidence

$2\equiv rac{4\pi\sin heta}{\lambda}=rac{n2\pi}{d}\propto heta$ Thickness of repeated feature

$$V = \frac{2\pi\hbar^2}{m}Nb = \frac{2\pi\hbar^2}{m}\rho$$

$$\rho = \rho_{nuclear} \pm \rho_{magnetic}$$

$$\overrightarrow{M} \propto \rho_{magnetic}$$

Experiment

Spin – flip scattering

- Rotated the sample and detector angle in magnetic fields of 20 mT and 0.5 mT
- Detector measured the intensity of the reflected neutrons as a function of sample angle over time

Results & Conclusions

Data Analysis Process

Experimental Data at High Field

$$Q_A = \frac{2\pi}{d}$$

$$\longrightarrow \quad \bar{d}_{actual} = 68 \text{ A}$$

$$Q_B = \frac{4\pi}{d}$$

- Spin Down Down
- Spin Up Up

Experimental Reflectivity vs Q for Non-Spin-Flip Scatteriing in a 20mT External Field

Best Model at High Field

x 10 ⁻⁶ (A ⁻²)

 θ_{M} (°)

depth (A)

Best Fit at High Field

Unit cell 1

Unit cell 2

Unit cell 3

Unit cell 4

Expected High Field Result

Unit cell 1

Unit cell 2

Unit cell 3

Unit cell 4

Actual High Field Result

Experimental Data at Low Field

Best Model at Low Field

Magnetization
Angle
(°)

 $x 10^{-6}$ (A⁻²)

Scattering

Length

Density

depth (A)

Best Fit at Low Field

Unit cell 1

Unit cell 2

Unit cell 3

Unit cell 4

Expected Low Field Result

Unit cell 1
Unit cell 2

Actual Low Field Result

Unit cell 3

Unit cell 4

Continuing Work

Why aren't the magnetic layers coupling anti-ferro-magnetically at low field?

Acknowledgments

- SURF Program at NIST
- Dr. Brian Kirby (NIST)
- Dr. Alex Grutter (NIST)
- Dr. Julie Borchers (NIST)
- SURF directors
- NCNR staff
- Dr. Joe Davies (NVE Industries)
- Juniata College